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ABSTRACT

9991 /

This report is concerned with the radiation of aperture antennas
into lossy media. Two antennas are considered: the infinite slot in
a ground plane and the rectangular aperture in a ground plane. The
object of the study is to determine for each antenna thé admittance
as a function of the electrical constants of the lossy medium. For
each antenna configuration, two problems are treated. First, the
antenna is assumed to radiate into a.lossy half-space, and second,
the antenna is assumed to radiate through a lossy slab into a free-
space region. For each case the aperture admittance is calculated
as a function of the complex propagation constant of the lossy medium

Lo

and the aperture dimensions.
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CHAPTER 1
INTRODUCTION

This study is concerned with the radiation of aperture an-
tennas into lossy media. Two types of antennas are considered:
the infinite slot in a ground plane and the rectangular aperture in
a ground plane. The object of the study is to determine for each

PRy SIS TN J
alilt€nila uic adQrlni

nce as a function of the electrical constants of
the lossy medium.

This work is motivated in part by a need to measure the prop-
erties of a plasma by means of the-admittance of an antenEna. in the
plasma. The rectangular aperture in particular is a practical form
of antenna for such experiments.

The properties of antennas in lossy media have been studied by
many authors.. The earliest work was done shortly before and during
World War I, when submarine communication problems stimulated
interest in submerged antennas. Geophysical prospecting also pro-

vided motivation for some of the work. By far the greatest portion

of the work on lossy media, however, was done after World War II.




Extensive bibliographies on this subject have been given by Hansen, !

2 3

Moore, © and Tai.

The most notable contribution during the early period was of

course Sommerfeld's treatment of the dipole over a lossy half-space.

5 6

This work is given in Sommerfeld, * Stratton,® and Bremmer,

7 8

Other work.during the early period includes that of Carson,’ Foster,

1R.C. Hansen, ''Radiation and Reception with Buried and Sub-
merged Antennas,'" Trans. of the IEEE, Vol. AP-11, No. 3, p. 207,
May, 1963. .

2R.K. Moore, "Effects of a Surrounding Conducting Medium on
Antenna Analysis," Trans. of the IEEE, Vol. AP-11, No. 3, p. 216,
May, 1963,

3C.T. Tai, "Antennas in Lossy Media, " Proc. of the 1963
URSI General Assembly.

*A. Sommerfeld, Partial Differential Equations in Physics,
Academic Press, Inc., New York, p. 236, 1949.

3> J.A., Stratton, Electromagnetic Theory, McGraw-Hill Book
Co., New York, p. 573, 1941l.

®H. Bremmer, "Electric Fields and Waves, " in Handbuch der
physik, S. Flugge, Ed., Springer Verlag, Berlin, Germany, Vol. 16,
Chapt. 4, p. 519, 1958.

" J.R. Carson, '"Wave Propagation in Overhead Wires with
Ground Return, ' Bell Sys. Tech. Jour., Vol. 5, pp. 53-554,
October, 1926.

8R.M. Foster, '"Mutual Impedance of Grounded Wires Lying
on the Surface of the Earth,' Bell Sys. Tech., Jour., Vol. 10,
pp. 408-419, July, 1931.




Riordan and Sunde, ? who were concerned with the effect of a lossy
earth on overhead wires and wires lying on the ground. Batcher, 10
Bouthillon,!! Taylor,!?:!3 Willoughby and Lowell'* considered the
submarine communication problem.

The studies on lossy media appearing after World War II are
much more numerous. Since our primary interest here is in the
admittance properties of antennas, we will discuss only those papers

dealing with the admittance. C.T. Tai in 1947 considered an infi-

J
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y
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-

nitesimal dipole in an infinite lossy medium and found that the input

%J. Riordan and E.D. Sunde, '"Mutual Impedance of Grounded
Wires for Horizontally Stratified Two-Layer Earth,' Bell Sys. Tech.
Jour., Vol. 12, pp. 162-177, April 1933,

1%R.R. Batcher, ''Loop Antennas for Submarines, " Wireless Age,
Vol. 7. p. 28, 1920.

111,, Bouthillon, '""Contribution a 1'etude des Radio communica-
tions Sousmarines, '"' Rev. gen. 'elect., Vol. 7. pp. 696-700, May,
1920. '

12 Taylor, A.H., "Short Wave Reception and Transmission on
Ground Wires (Subterranean and Submarine),' Proc. IRE, Vol. 7,
pp. 337- 362, August, 1919.

13A.H. Taylor, "Long Wave Reception and the Elimination of
Strays on Ground Wires (Subterranean and Submarine), " Proc, IRE,
Vol. 7, pp. 559-583, December, 1919.

143,A. Willoughby and P.D. Lowell, "Development of Loop
Aerials for Submarine Radio Communication, " Phys., Rev., Vol. 14,
pp. 193-194, August, 1919.




5 Tai also found the input impedance of a bi-

power is infinite.,!
conical antenna in an insulating cavity.”’ Wait has discussed the
impedance of a long wire over the earth, '7 and the mutual impedance
of loops lying on the earth.'® He has also determined the radiation
resistance of a horizontal loop over the earth!? and the radiation
resistance of dipoles in the interface between two dielectrics.?® King

21

and Harrison® have discussed the impedance of a half-wave cylindri-

cal antenna in a dissipative medium. An extensive treatment of the

4

15C.T. Tai, ""Radiation of a Hertzian Dipole Immersed in a
Conducting Medium, ' Cruft Lab,, Harvard University, Cambridge,
Mass., Rep. No. 21, October, 1947,

16C, T, Tai, '""On Radiation and Radiation Systems in the Pres-
ence of a Dissipative Medium, " Cruft Lab., Harvard University,
Cambridge, Mass., Rept. No. 77, October, 1949,

17 3,R, Wait, '""On the Impedance of a Long Wire Suspended
over the Ground, ' Proc. IRE, Vol, 49, p. 1576, October, 1961,

187, R. Wait, "Mutual Coupling of Loops Lying on the Ground,"
Geophys., Vol. 19, pp. 290-296, April, 195%.

197, R, Wait, Radiation Resistance of a Small Circular Loop
in the Presence of a Conducting Ground,'" J. Appl. Phys., Vol. 24,
pp. 646-649, May, 1953,

207,R. Wait, "Radiation Resistance of Dipoles in an Interface
between Two Dielectrics,' Can, J. Phys., Vol. 34, pp. 24-26,
January, 1956,

ZR,.W.P. King and C.W, Harrison, "Half-Wave Cylindrical
Antenna in a Dissipative Medium: Current and Impedance,' J. Res.
NBS, Vol, 64D, pp. 365-380, July-August, 1960,




cylindrical antenna in a lossy medium has also been given by
King.?* Kraichman has discussed the impedance of a circular loop
in an infinite lossy medium.

Some recent work has been done by Guy and Hasserjian®* who
have discussed the impedance of dipoles for an array immersed in
a lossy half-space. Ghose?® has examined the mutual coupling be-
tween subsurface antenna array elements. Bhattacharyya2® has

investigated the resistances of horizontal electric and vertical mag-

netic dipoies over a lossy earth. Chen and King® have treated a

22 R,W.P. King, '"Dipoles in Dissipative Media, " Proc. Symp.
on Electromagnetic Waves, Math., Research Center, Univ. of Wis-
consin, Madison, Wis., April, 1961, Univ. of Wisconsin Press,
pp. 199-241, 1962,

23M.B. Kraichman, "Impedance of a Circular Loop in an
Infinite Conducting Medium, " J. Res. NBS, Vol. 66D, pp. 499-503,
July-August, 1962,

4A.W. Guy and G. Hasserjian, 'Impedance Properties of
Large Subsurface Antenna Arrays,' Trans. of the IEEE, Vol. AP-
11, No. 3, pp. 232-240, May, 1963,

25 R.N. Ghose, '"Mutual Couplings Among Subsurface Antenna
Array Elements,' Trans, of the IEEE, Vol. AP-~11, No. 3, pp. 257~
261, May, 1963.

26B K. Bhattacharyya, '"Input Resistances of Horizontal Elec-
tric and Vertical Magnetic Dipoles Over a Homogeneous Ground, "
Trans. of the IEEE, Vol., AP-11, No. 3, pp. 261-266, May, 1963,

27 C.L. Chen and R.W.P, King, '""The Small Bare Loop An-
tenna Immersed in a Dissipative Medium, ' Trans. of the IEEE,
Vol. AP-11, No, 3, pp. 266-269, May, 1963.




bare loop antenna in a dissipative medium. Fenwick and Week's""8
have discussed impedance of buried insulated wires.

Finally, the work of Galejs should be noted. Galejs has con-
sidered the admittances of slot antennas radiating through a plasma
layer. He has used the clever technique of considering the infinite
half-space fo be a waveguide of very large, but finite, dimensions,
allowing the fields to be represented by a discrete sum of
modes . 29,%, 3

As mentioned above, in this study two types of apertures are
considered, the infinite slot in a ground plane and the rectangular
aperture in a ground plane.

In Chapter II, an expression for the admittance of an arbitrary

aperture is derived and shown to be stationary. In Chapter Il the

28R.C. Fenwick and W.L. Weeks, ""Submerged Antenna Char-
acteristics,' Trans. of the IEEE, Vol. AP-11, No. 3, pp. 296-305,
May, 1963,

297, Galejs, "Admittance of Annular Slot Antennas Radiating
into a Plasma Layer, ' Project No. 125, Applied Research Labo-
ratory, Sylvania Electronic Systems, 30 July, 1963.

307, Galejs, "Admittance of a Waveguide Radiation into
Stratified Plasma,' Proj. No. 125, Appl. Res. Lab., Sylvania
Elec. Sys., June, 1963,

3 J. Galejs, '"Slot Antenna Impedance for Plasma Layers,"
Appl. Res. Labs., Sylvania Elec., Sys., 23, July, 1963,




admittance of an infinite slot is found for two cases: radiating into
an infinite lossy medium and radiating into a lossy slab. Chapter

IV treats the rectangular aperture, also for the same two cases.




CHAPTER 1I
THE ADMITTANCE OF AN APERTURE

Consider an aperture which opens through an infinitely con-

ducting ground plane into a half-space region, as shown in Fig. 1.

Aperture

Waveguide

Which Excites,
Aperture

Infinitely Conducting
Ground Plane

Fig, l--Aperture in a ground plane

The half-space z > 0 consists of an isotropic dielectric with ar-
bitrary permittivity ¢, and conductivity o; and with free-space
permeability, The fields in the aperture are excited by a wave-
guide whose cross~section is for the moment arbitrary except that

it does not vary in the z direction. The waveguide is driven by a




source which produces only a single mode incident on the a.pefture.
The purpose of this section will be to derive a stationary formula
for the admittance which effectively terminates this mode as a re-
sult of the aperture radiating into the half-space.

With a single mode incident on the aperture, the electric and

magnetic fields in the aperture may be written

(1) E(x,7,0) = Vogola,y) + ) Vientx,y)
n:0
2)  Hx,y,0) = Y Vohy(x,y) Z Y_Vorh (%, )
. n=0

where ;n(x, y) and Tln(x, y) are the transverse vector mode func-

32

tions™® appropriate to the particular waveguide cross-section and

satisfying the relations

(3) gn(x: Y) =T1n(xs Y) X 2
(4) Sg len(x, y) |2 ax dy =§S}En(x, y)2axay=1.
aperture aperture

32 R.F. Harrington, Time Harmonic Electromagnetic

Fields, McGraw-Hill Book, Co., New York, pp. 381ff, 1961,
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In (1) and (2), Vg is the amplitude of the incident mode and Vyp, is
the complex amplitude of the n-th reflected mode. Yp is the char-
acteristic admittance of the waveguide for the n-th mode. The

terminating admittance of the incident mode is given by

Vo - Vro

5 Y =Y 0 19
%) - °© Vo +Vyo .

Equation (5) may be put in a stationary form by the following ma-
nipulations. From Eq. (1) and the orthonormal properties of the

vector mode functions

(6) Vo + Vio = ggf(x,ym) + eo(x, y)dx dy
aperture

(7) Vien = gj‘f(x,y,O) + ep(x,y)dx dy .
aperture

Hence Eq. (2) may be written in the form:

(8) H(x,y,0) + Z Ynﬁn<x,y>§§ E(n,&,0) + op(n, £)dn dt
n=1 aperture
=Yo(Vo-Vrolholx, y),
orxr
(9) T(x,y) = Yo(Vg = Vio)holx, y)

where F(x, y) is the quantity
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Bat
(10) Fx,y) =Heeyo0) + ) Yoot y) ({60
n=1 aperture
- ey(n, £)dn dE .
Forming the vector product of E(x, y,0) and Eq. (9) and inte-
grating the z-component of the result over the aperture yields
the formula
— — A

(11) SS‘E(X, y,0) X I'(x,y) - zdx dy = Y (Vo=-Vol(Vo+tV o).

aperture

Hence, combining Eqs. (5), (6), and (11), the admittance is found

to be formally given by:3

ﬁ’ﬁ(x.y, o)X Tix,y) - 2 dx dy

aperture

- 2
SS E(x,y,0) + og(x, y)dx dy]

aperture

[t

(12) Y

st ny

If the actual aperture fields are known, they may be substituted
into Eq. (12) and the admittance may be found. As usual, this is
not much help, because the fields are not known. The usefulness

of Eq. (12) stems from the fact that this expression is statioriary

* with respectto variations of the electric field about its exact value,

33 This expression is essentially the same as that given by

Lewin, Advanced Theory of Waveguides, Illife and Sons, Ltd.,
London, pp. 121-125, 1951. '
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as will be shown below. Hence, an approximation for E may be

used to obtain a good estimate for Y,

To show that Eq. (12) is stationary, let
(13 E=Ey, +BE

where Eo is the exact aperture field and BE is the variation. Also,

to simplify the algebra, let

(14) Do =§5 Eo(x,y,0) + eqlx, y)dx dy
aperture
and
(15) 5D =§§5E < egdx dy .
aperture

Then the first variation in Y is given by

(16) 6Y=—Dlz[Dé ggb'i:XFo-’z\dxdy+Dg§§ona?-’z\dxdy
© aperture aperture
-ZDOGDSE Eo X T, + 2 dx dy
aperture

where the notation

(17) T =Ty + 8T

34C.L. Dolph, ""A Saddle Point Characterization of the
Schwinger Stationary Points in Exterior Scattering Problems, "
J. Sco. Indust. Appl. Math., Vol. 5, No. 3, pp. 89-104, 1957.
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has also been used. Here Fo is the value obtained by using the
exact fields in Eq. (10) and BT is the variation.

To show that £Y is zero, the first step is to show that

— —_ A — —_— A
(18) S‘S‘GEXPO-zdxdy=SSE0X6r‘-zdxdy
aperture aperture

in Eq. (16). From Eq. (10), it is easily found that
- = = - A P —, A
(19) gS[bE X To-EgX &r] - zdxdyzs‘g [BEXH -EgX 8H]- z dxdy.
aperture aperture

Now consider the fields in the region z > 0, the half-space. In this

region both the trial fields, E, H and the exact fields Eo’ ﬁo satisfy

the Maxwell equations

(20) VX Eg = -jupoHg

(21) V X Hg = (jue, + 01)Eg
(22) VX E = -joucH

(23 VXH =(jue + o))E

and the radiation condition at large distance from the aperture.
Hence from superposition the variations BE, GH also satisfy
Maxwell's equations and the mdiation condition at large distance.
Also, the tangential components of both Eo and BE are assumed to

be zero on the z = 0 plane outside the aperture. Therefore
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(24) Sg[bixﬁo-iox 6H) . zdxdy = - g[aixﬁo_ﬁox 6H . n ds
aperture Zy 2,

where ¥, is the z = 0 plane, 2, is a spherical surface at infinite

radius, and ﬁ is a unit vector normal to Z; or £, and directed out

of the enclosed volume of £; + Z,. But from the divergence

theorem,

(25) yg [BEX H,-E, X 6H] . hds :XSSV. [6E X Hy-E, X 6H]dv
PINEDIN v
:SSS[EO-Vx&i-&f-vxﬁo-éﬁ-vxfo+fo-vXﬁﬁ]dv
\%

where "V!' is the volume of the half-space z > 0. Using Maxwell's

equations in (25) gives finally:
—_ = = — A v — — _
(26) 5§ [BEX Hy-EyX EH] - nds :Sgg[Ho * (~jwpgyBH) - BE
)+, v
¢ (jwer +01)—E—30 - 8H - (—jwpol_-l-o);h:,o * (jwg +0y) 6E]dv=0.

This establishes Eq. (18).3%® Using Eq. (18) in Eq. (16), 8Y may be

written

351n later sections two types of media will be considered for
the region z > 0: an infinite lossy medium and a lossy slab of
finite thickness. For the case of the slab, two volume integrals
should be considered, one in the slab and one in the region out-
side the slab. The surface integrals over the slab interface are
then equal because of the continuity of the electromagnetic field.
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1 2 (et .2 - <7 A
(27) ov =y 20} SS@EX T_ . zdxdy-2D,6D §§E°X T, .2dx dy .
aperture aperture
Next, from Eqgs. (16) and (14),

(28) Vio = Dg - Vg
and hence Eq. (9) may be written
(29)  T(x,y) = Yo(2V4 - Dodhy(x,y) .
Therefore

PR — A _ = A
(30) SS%EX Ty - zdxdy = Yo(2Vg-Dg) §S6EX ho(x,y) » zdx dy .

aperture aperture
Multiplying Eq. (30) by 2D3 and using Eq. (3) gives
— - A 2 [ —

(31) 2D}, S‘ya}: XTgo+ zdxdy= 2Dj Y (2V,-Do) SX BE - ey(x, y)dx dy

aperture aperture

2
= 2Dg Yo(2V5-Dg) 6D .
Also from Eq. (29)

—_ _ A —_ A
(32) SSV EoX g+ zdxdy = Y (2Vo=Dy) SSEOX hy(x,y) - zdx dy
aperture : aperture

= Y (2V4-Dg)D, -

(Multiplying (32) by 2D,8D yields
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— — A 2
(33 2D 6D S\SEO X Tg » z dxdy = 2Dg Y (2V_-D_)6D .

aperture

Equations (31) and (33), when inserted in (27), show that
(34) 8Y =0

which establishes the stationary nature of (12). In the following
sections, Eq. (12) will be used to compute the admittance for several

specific apertures.




CHAPTER 111
THE INFINITE SLOT
In this chapter, the infinite slot antenna is treated. In
Part A, the antenna is assumed to radiate into an infinite lossy
medium. In Part B it is assumed to radiate through a lossy slab

of finite thickness into free-space.

A, The Infinite Lossy Medium

Consider an infinite slot which opens through a ground sheet
into a lossy half-space, as shown in Fig. 2. The slot extends in-
finitely far in the y-direction and has width '"a'" in the x-direction.

Outside the slot, the xy-plane is infinitely conducting.

Fig. 2--Infinite slot in ground plane

17
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MKS units and the time convention e Tiwt will be used through-
out this work.,
The entire half-space z > 0 is assumed to be homogeneous and

isotropic, and is characterized by a complex propagation constant

(35) k, = wzpoel(l -j f_l__) 2
: we]
where
k; = complex propagation constant
w = radian frequency
Mo = permeability of free-space
€; = permittivity of z > 0 region
o; = conductivity of z > 0 region.

The slot is excited by a parallel plate transmission line from
behind the z = 0 plane. The electric field in the slot will be assumed

to have the form of the fundamental mode for this structure,

—_l__— }/2: x| <a/2

Ja

0 : fxf>a/2 .

(36)  E(x,y,0) = eg(x,y) =

Equation (12) may now be applied to compute the admittance.
For this geometry, all field quantities are independent of y and the

appropriate form of Eq. (12) is




a/2
— — N 19
SE(X.y,O) X I'(x,y) - zdx
x=-a/2
(37) Y = 3727 - .
E(x,y,0) * ey(x,y)dx
=-a/2

Because of the orthogonality of the vector mode functions,
a/2

(38) gzo<x, y) X hy(x,y) - 2dx =0 (n # 0)
-a/2

it is found that the integral in the numerator of (37) reduces to

a/Z a/Z
(39) S‘}_E(x,y,o) X T(x,y,0) 2 dx :S E(x, y, o)
<a/2 , x=-a/2

X H(x,y,0) * 2 dx .

Hence to evaluate Y the problem is to find the magnetic field
ﬁ(x; y, 0) resulting from—E(x, Y, 0).

It is easily seen that the electromagnetic fields in this prob-
lem are everywhere TE to the y-axis, Hence the fields may be

derived from a vector potential of the form

(40) F=%u

where | satisfies

(41) Yy +tk § =0
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with appropriate boundary conditions. The electric and magnetic
fields are related to F through
(42) E=-yXF

1
Jopo

[K2F +w(v - F)] .

e
n

(43

com-

Since the fields have no y-dependence, the E, and Hy

ponents are given by

(44) E, = +g—4z’
(495 Hy = -(joey +o1)¢.

This geometry may be regarded as a transmission line in the
z-direction with infinite cross-section in the x-direction. Hence
the solution for § may be constructed as the sum of a continuous

spectrum of eigenvalues,

1 % -jkzz ~jkyx
(46) W(x, vy, z) = —EES f(ky)e e dk_
-0
where
2 2
(47) ky, =| k1 - ky

and the root is chosen so that
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(48) Re(kz) > 0
(49) Im(kz)< 0
corresponding to propagation in the +z direction.
E, is then given by
oo 3 -
) ~-jk, =z =ik X
(50) Exlx,y, z) = 1_5 ik, f(ky)e ~ e K dk,
2wJd _ _
or in the z = 0 plane
” —Jkyx
(51) Ey(x,y,0) = I_S - ik, f(ky) e dk,, .
: 2w J_o
The function f(ky) is then found by taking the inverse transform:
o + jk x
(52) -jk, f(ky) =S‘ Ex(x,y,0) e dk, .
-00
Using (36), this gives
22 ) i 2 g [l
(53) -jky £(ky) =§ 1 . dig= 2 ain (2
- Y.z ] Ja ke
or
) ‘ kx 'J-a— ] 2 .

Thus the solution for ¢ is
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oo . k =3 o .
(55) Y(x,y,z) = 1a &m 2)_ sin (—gﬁ)e Jeg2 i dk,,

2111—— k‘xkz

and finally Ey and Hy are given by (44) and (45) as

*© k_a . )
- -jk
(56) Exix,y,2) = lj_g siu}—i—-—(-’é—)e szZ o JRyX dls(
am|a -0 X
~(juey +o1) f® 25 2\ -k z -jkyx
(57) Hy(x,y, z) :—-———‘—-5 kli sin ___IS; e % e K dk,.
21\'\‘;_ e X7 Z
For z = 0 these give
1 0 2 [ kea) -jk.x
(58) Ex(x,y,0) = S b s1n< ’2{ >e 7 dky
2n[a ),

L e 2(eesjon) . ka  -jkgx
dowar-jnn) o0 &2 x .
S‘ > e dk,

\ — sin

ZTI'J—; =00

With no y-component of the electric field, Eq. (39) becomes
a./Z a/Z

—_ — A
(60) S‘ E(x,y,0) X H(x,y,0)« zdx =\S1 Ex(x,v, o)Hy(x, y, o)dx
x=-a/2 x=-a/2

Since E(x,y,0) is zero for [x[ > a/2, the limits of integration

in (60) can be extended to infinity. Then substituting (58) and (59) in’
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(60) and making use of Parseval's Theorem?3® gives
a/2

(61) § E(x/y,0) X H(x,y,0) « & dx
x=-a/2

o . d

1 4(wey ~joy) . 2 ( kya
— sin

27 o lgz‘kza.

Now the integrand may be rearranged and Parseval's Theorem

may be used again. Let

4(wey ~joy )

(62) filld = =
| ; 1 . kxa
o e L e
(63 L) = = sin \2)
x 0
The transform of f; (ky) is given by:
© .
1 -
(64) Fi) = 3 | nge 9 a
-0
3¢ For the transform pairs
o0 3
_kax
Rt = 5 (7 flgge ™ ag
-00

o -jk, x
F, (x) = %g £ (ky)e e dk,,

Parseval's Theorem is:

§

-00

0

F) (OF} () dx = 5= § £ ()£ () dky,
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(=] .
1 4wey —joy ) ~Tkxx >
5 = —— dk
65) 2 i, € x
~c0

‘ @
2(wey -jor )He (kp |x]).

(66) =
The transform of f,_(kx) is
) 00 -ik
(67) F,(x) = _1_5 £, (ke P X dky
2m J_
® 1 . a -J
(68) = El.; _ ;.—k:{ 31n2(1—%§—) e Jhx dky
L aefxlys Jxl< o
4a ) -
(69) FZ(X) “lo : fx’> a .
Then Parseval's Theorem gives
a/Z . _ A 1 ® %
(70) S EXT.zdx= zﬂ £ (kg)f, (ky)dk,
-a/Z -
® B ( -] ) a
- mrfma s S5 el
-00 -3

. Hf:) (k; Ix}yax .

3 The integral in (69 is derived in:

R.T. Compton, Jr., "The Aperture Admittance of a Rectangular
Waveguide Radiating into a Lossy Half-Space,'" Report 1691-1,
Antenna Laboratory (in preparation).
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Since the integrand is an even function of x, this may be

written

a/Z _ _ s a 2
(71) S EXT. zdx = —“’—61—311—5‘ (a-x)Hf))(klx)dx )
-a/Z a o

The denominator in Eq. (37) is simply unity. Hence the
admittance is given by:

) a
(72) Y = _“Ll-_]_o;l_ (‘ (a.,x) H

a
Yo

-2

(2)

o (kix)dx.

It is convenient at this point to normalize (72) with respect to

the free-space constants, Let

2
(73) kg = wl Moo = 5
o

be the free-space propagation constant, where €, is the permittivity
of free-space and A\, is the free-space wavelength for the frequency

w. Also let
(74) Y, = Ifg
Mo
be the characteristic admittance of free-space and define
(75) n = kox

(76) A =kga.




Then (72) may be written in the form

Yol k : (2)(1(1)
77 Y = — | =L 5 A-n)H — d
(77) A<k0> . ( "l) o{ ko n n

where

Since

(2
H; )(P) = J1(p) =~jN1(p) and J;(0) =0,

(79) lim [anz)(l—lz-l— n)} = -j lim [an(%
n->0+ o T1#,0+ o)

For small p,

(80) Ni(p) = -2 Lig(p)+2m Y7(p)
T p ™ 2
4 9 1
—;r- EE[JZ(p) - ’ZJ4(¢) + ]

where Y = 1,781, and thus

26
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(81) lim H(z)(_l)z-E 1
nao+"‘ V| ) T/ .

Therefore (77) becomes:

I I (GUERN AR
4 Yo 2
A w,

Finally, with the substitution

(83 ki = ceni?
ko
(82) becomes
(84) Y = Y° CAe JZ“’S Ho (ge'j“’)dg
< Yo cae ¥ ul? (caeity 45 Yo 2
A A T .

As a check on the algebra, it may be seen that Y has the correct
dimensions. A, C, and the integral are dimensionless. Hence Y

has the dimensions of Y,, i.e., mhos.
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Let?
X
(z) . +ja
(85) IH,(x,a) = |\ Hy (te™)7)dE,
o
Y ..
Then Y, normalized to Ko , is given by
. . 2 .
(86) -:;L- Y = cae ¢ [e"Jq’IHZ(CA, ) -H. )(CAe'Jq))] +; 2
o m .

8 The function IH,(x, a), and also the integrals

X

1J(x,a) = S Jo(Ee
o

IN(x, a) :S‘

* ) 4a
1H, (x, a) =S H, (te?%)at
o]

+jcx)d§

X ‘.
No(£ e™%)dt
o]

have been tabulated by the author for 0<x<10,0, -90°<$<90°, and
will be published in a forthcoming Antenna Laboratory report.

2
The values of Hi )(z) for complex z were obtained from the
following two tables:

(a) "Table of the Bessel Functions J,(z) and J, (z) for
Complex Arguments,'' Mathematical Tables Project, National
Bureau of Standards, Columbia University Press, New York, 1943,

(b) "Table of the Bessel Functions Y(z) and Y, (2z) for
Complex Arguments, "' National Bureau of Standards, Columbia
University Press, New York, 1950,
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Equation (86) has been evaluated for 0 < CA < 10 and 0° £ 6 < 90°,

and is shown in Fig. 3. It is convenient to plot the normalized quantity

T[é Y, since then only one curve need be drawn for all apertures.
o

For a fixed aperture size and fixed frequency, Fig. 3 shows

the behavior of the admittance Y as a function of C, and hence as a

function of ¢; and oy .

A 8 Y=G+jB _
y _.
° -::— =Ce J¢
A 0
e
$ -0
: : 4 i A
0 2 6 8 10 TOG
15°
2
-24 / /
3
4 / 300
Fig. 3--The normalized admittance A Y for an infinite medium

Y,
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If one is interested in the admittance of the slot as a funétion
of the slot dimension A(=kya), the shape of the curves in Fig. 3 is
misleading because A is included in the normalizing constant for
Y. This difficulty may be remedied by using the data of Fig. 3 to
determine the quantity X as a function of A (and ¢) for fixed C.

As a check on the mc:.merical results shown in Fig. 3, it is
helpful to consider two limiting cases. First, suppose the semi-
infinite region has €; = o, = 0 so that C = 0. (The point given by
CA =0 in Fig. 2 also corresponds to the d.c. case, i.e., w=0,
but the interpretation near w = 0 is somewhat tricky. This case
is discussed below.) Then it is clear from Eq. (59) that Hy(x, y, 0)=0
and therefore Y = 0., This accounés for the fact that the curves in
Fig. 3 approach the originas C - 0.

Second, consider the case where C is large (and ¢ # 0).

»

(2) ¢
Since the function H, ( Ilz—l- T\) decays rapidly to zero for complex
o

i—l as n becomes large, the integral in (84) may be replaced by

(o]

(87) g

with little change in value. From the Fourier Transform pair:*

CA . © .
H (ge™I?) ag = 1Y (ge)at
o

o

¥See Reference 37.




00 2 .
(88) S‘ Hi,) (a fxfye Po® ax =
- -k

where

(89) Re[JoZ-K2] >0

(90) Im[| o - kle <0

it is seen that

(91) S HS) (ax)ax =1
o a

Hence the integral in (87) may be approximated by

CA (2 . .
(92) S i) (gemitag > oI?.

o

Also for large C,

(2) —jby ~
(93 (CA)H, (CAe™ ) Z0 (6£0) .

31

Making use of these gives the following approximate form for (84):

Yo
A

~N

(94) Y ?AB CA 3?4

EN

or
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A ~ -jd . 2
> = +i £
(95) Y Y =CA e ] -

This behavior is ciearly indicated in Fig. 3. Comparison of
Eq. (95) with the curves in Fig. 3 shows that (95) is quite accurate
for ¢ > 15°and CA > 7.

As mentioned above, the behavior of Y as a function of fre-

quency is somewhat tricky as w—>0. From (86)

. . 2 .
(96) Y = YoCe 3% [e73%1n, (cA, -c’p)-Hi )(CA e~i® ]
.2 Yo
TR

For low frequencies, if o3 #0, C and CA are given by:

97 c- |k =}J -jopgljec, + 0,) ;z o
° J W Bo€o °
k
(98) CA =| =L kaa :' WUl a
o

Hence CA -0 as w—> 0. For small values of p,

(2)

(99) Hy (p) T 1 -] enl’?:&

ENINY

Therefore putting p = £e?” and substituting (99) in (85) gives for

small x

N
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(100) IHz(x,a)’;x(l tj z _J._z_ln\{_x_l__z_a)
™ T 2 m
(y =1,781). Similarly, for small p,
@ ~o2 01 . I3 Yp
(101) H (p)=j= =ittt .
T p ™ 2
Using (100) and (101) in (96) gives
(102) Y = Y e ? [e'j¢ CA (1 yjZ 2z, YCA (2 ¢)
™ T 2 ™
cAe"I®  vca cae-i¢ ]
+j —— h— + = ‘PJ .
w 2 m

Substituting (97) and (98) and collecting terms gives for the leading

term in
(103) Yoy Ol iy Wopon 2 a1 2
‘n’ L)
Since
(104) -¢ = arg] -jwpolive:r + o01)
for small w,
105 T I
(105) $ 2
and therefore
(106) L L YJ“’PO‘Tl a
b f 2 .
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Because

(107) lim t W& ®
w—07 2

it is seen that Y - +o as w =~ 0, for any o) #0.

If oy = 0, however, instead of (97) and (98) we use

(108) c- | -fa
'ko. ¥ &
(109) CA = w Ro€1 2

in (102). This gives

(110) Y=wela[1+j %(z-mw&%@_a)]

which is an interesting result because
teo: 03 £0
(111) lim Y =
w— 0 0: o, =0
This peculiar behavior may be understood by examining care-
fully the logarithmic term in (102). For any non-zero conductivity,
this term contributes a éingularity at w = 0. The lower the con-
ductivity, the lower the frequency must be before this term con-
tributes appreciably to Y. In the limit, the singularity atw = 0

disappears,
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Finally, it is interesting to make the following observation.
Suppose the parallel-plate transmission line shown in Fig. 2, in-
stead of feeding a semi-in-ﬁnite half-space, feeds an infinite sec-
tion of transmission line with the same dimensions and with a lossy
dielectric between the plates, as shown in Fig. 4. The ché.racter-
istics admittance of the line for z > 0 is

X
A

o.-oo

La .

o g

Fig. 4--Infinite transmission line model

_ .w€1 +(Tl
(112) Yo = L_jwuo ]

The terminating admittance, Y', for the section of line z < 0 is

simply Y.. Hence, after some algebra

(113) Ay A e tor | gpmi®
Yo YO pr'o
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which is the first term of (95). Thus, except for a constant j z ,
™
the admittance of the slot is correctly given by the model in Fig. 4,

for large CA.

B. The Lossy Slab

Next the case where the infinite slot radiates into a lossy slab
of finite thickness will be considered. The geometry is shown in
Fig. 5. As before, the slot has width "a" .and the electric field in
the slot is given by Eq. (36). The slab has thickness ''d" and prop-
agation constant k; . In the region z > d, the medium is free-space,

with propagation constant kg .

X

€()’I"LO

v
y-oxis o
( Out of Poges)/

\

N

N

NN

4 d

n
o
~N

"

Fig. 5--Slot radiating through finite slab
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As in Part A, the fields are TE to the y-axis and may be

derived from a vector potential of the form given by Eq. (40).

. The electromagnetic fields are then given by Eqs. (42) and (43),

with the appropriate value of k used for each region of space.
In the slab, which will be called Medium 1, ¢ will consist

of both an "'incident'" and a "reflected'" component:
® k. +jk
(114) Y1 (x,y,2) = LS‘ [1(ky)e 21 % + Rk, )e > 2]
2w J_ o
. e IE dk, .

In the free-space region, Medium 0, ¢ has only a transmitted

component,
o --k --
(115) Yolx, ¥, 2) =-21—"§ Tlky)e SKzo? ¢ IkxX dk, .

In (114) and 115) kz, and k,, are the z-direction propagation con-

stants given by
2 2
(116) kzy =] k1 - ky

112
(117) kpo = ko'lszc

which are chosen so that

(118) Re(kz1), Re(k,p) 20
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(119) Im(kz)), Im(k,g) <0 .

Applying Eqs. (42) and (43) gives for the fields:

00 . .
(120) Exi(x,y,z) = %S [-ijII(kx)e-JkZIZ +jkle(kx)e+JkZIZJ
- 00
. e—jkxx dky
121) Hoix, v, 2) = 2 ( =(oer +01) [Ty e 2 Z4R (k) 5217
¥ 2w x x
-0
-ik
. eI dk,
® ik ik
(122) Eyxolx,y,2) = El— -ik, 0 T(kx)e-‘] z0Z o "I¥xX dk,,
m -0
1 - ® ik_ .z j
(123) Hyolx,y,2) = o= | -juegTlige™ 20 e X g,
m
For z = 0, (120) gives the relation
1 jk
128 Exmoy.0) = 0= | ke [ R0 Je 7 i
-00

Taking the inverse transform of (124) and making use of (53) gives

(125) g1 [ (k) + Riky) | = —2 sin(iﬁ)
aky 2 /.

Also, applying boundary conditions at z = d:
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(126) Exi(x, d) = Eyo(x, d)
(127) Hyi(x, d) = Hyo(x, )
gives the two relations
-j +jk -j
(128) kg (L e 982192 Ritg)e P21 9] = ko T (i) e o209
] -jkz; d +jkgz,d . ~-jk,od
(129) (jwer +o1) [Tlg)e ™ 2 T+ Rl e T 2] = jueoTiky)e ™ 20°,
Solving (125, (128), and (129) simultaneously yields for I(ky) and
R (kx)
z -
(kz1 K ) +ikzd
— t+t e
kzo kg j . [kxa
(130) I(k,) = sin| —5—
K2 ka1 . koda
_‘12_ cos kzyd +j Zl sin kz,d oz
ko ‘ zOo
2
(kzx k_l_)e'jkmd
— - 2 . i
kZO kO J . kxa
(131) R(kx) = 2 sin >

k .
—L coakzd 4] i(—z-l-Slnkzld kxsz—a_

o z0
Equations (130) and (131) along with (120) and (121) determine the
fields in Region 1.
Now applying Eqs. (37), (39), and (60) and making use of

Parseval's theorem yields for the admittance



40

0 2 .
. . .
(132)  v=_1_ g 14Ckytankzd __ 4k sin,_(kxa) ik,

2ma J_o, Clky)+jtankzid  wpokaky

where
: 2
_ky kzo
(133) C(ky) = —1%- _—kZ], )

The integral in (132) is difficult to evaluate analytically.
To obtain quantitative results from (132), it was necessary to
resort to numerical integration techniques.

Before discussing these results, however, it is interesting

to make the following observation.

Let
(134) B = o ~Jkz1d
Then
1
g P 1 - p?
(135) tan kZld = -—j 1—+—B—— = _j T-T-_ﬁ_z__ ,
B
and
. 1_ 2
14C(k) 7
(136) 1+4jC(ky)tan kzld= ( 146 _ D(&)_Bz
C(kx) +J ta.nkz]_d 1- 2 D(kx)+BZ ,
where
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2 2

C(k +1 ki k + k. .k 1
(137) D(kx) = C( x) 1 = ; ZO (23 z
(kx) - kl kzo - kokzl

Equation (136) may be expanded

, 1-<BC © , \n
(138) Dlk)=B” D(kzxj =1+ 2 Z (,-1)“(_._])&()) ,
D(ky) 4% 14 _B n=1

D(k,)

which is valid if

I A2 !
(139) }P '<1.

D(k,)

Then, substituting for £ and D(ky) in (138) yields the expansion

0o .

. 2 2 .
a0 LiiClednknd Y (Koknoklie, )" o-iznkaid
C(ky)+jtankgz,d A kZkz+klkzo

This result is interesting because the terms of the series in (140)

-j2nkz1d is small

are easily interpreted. For a thick, lossy slab, e
and the terms of the series are negligible in comparison with the
leading term of 1. If the substitution

1 +jC(k,) tan kz,d ~
C(ky) + jtan kz,d

1

(141)

is made in (132) the resulting admittance is the same as in part A

above, i.e., the admittance of a slot in an infinite lossy region.

-j d .
The exponential e jznkz) represents the phase shift and attenuation
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undergone by a wave propagating from the aperture out to z = d and
2 2

kokz = kikzo
2 2

the reflection coefficient associated with a reflection at z = d.

back to the aperture. Also,( ) may be shown to be

Hence, the n-th term in the series (140) represents the effect on
the admittance of the wave arriving at the aperture after n re-
flections bétween z=0andz =d.4°

Although the expansion in (140) does not help to evaluate
(132), it serves as a check on the derivation of (132) and allows
a direct physical meaning to be attached to the integrand.

Now we return to the evaluation of (132). First, the in-

tegral may be written in terms of normalized parameters. Let

(142) o =Ce® ok
k0

kx

(143) n=—
kO

(144) A =kga

and

(145) D = kyd.

9B van der Pol and H. Bremmer, Phil. Mag. (7)24(1937)825.




Then (132) becomes

o 1Hip? ———B—M'ztanj pZ-n2 D p? sin? (I‘Zf‘-)
(146) Y =2 %93" P~ dn.
™

= 2l tjtanf pZ ZD 1% p® -
JpZn?

Equation (146) has been evaluated numerically on the Ohio
State University IBM 7094 digital computer for various values of
p, A, and D. Since the integrand in (146)' is an even function of
7, ¥ may be found by integrating over the range 0 <n < » and
multiplying the result by 2. The integral over the finite range
0 < n < no is actually used to approximate the integral over
0 £ n < », where ng is chosen large enough to include the region

where the integrand is significantly different from zero. 7, is

chosen as follows. For large n,

(147) tan] pZ - n? D T tan(-jnD) = -j

and hence,

(148) P_M Y,
217 +j tanl p2 -n2 D
p°-n
Let
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(149) n = 10fp| = 10C,
(150) n, = 3/D,

and

(151) ﬂo =max(ﬂ1,ﬂz)-

Then for |n} > lnol, Eqgs. (147) and (148) hold to a good approxi-

mation. Now from (146), the normalized admittance A Y may be

o]
written,
1+p? __1'1_J tan}p?-n2 D p? sin? (nzi)
(152) —-—Y ‘Y Jp*-n’ dn
e z--]-——13--+Jtan\lpz 2D nf[pf -q
p*-n

o ot oint (%)

+iS‘ dn .
-0 "1.]

The following relations then hold

foe] Pz Sinz(nA )
dn| <

4
—y-w n?p? -7t

(o8]

4
w 2

Mo M P -m

41
(153)

41 Of course, to say a < b = c does not actually ""prove' any~
thing about the relation between a and c. However, the argument
can easily be made rigorous.
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(153) '¥%CZS ;?:%(i)

cont, Mo

and therefore the condition

(154) ne 2 10 C
implies
_2(nA
® pzsm?-(nz_) 2__ <o.01.
(155) iS dn|< T0Ow
™ - T a——"
ne M4 P

Hence to within this error

2
.____Il_JI"tan 2D olsin® nA
'r]o 1+J 2- 2 P n P 2
(156) Y£Y=i [p?n dn.
e} | 2 . )
© p2dlm_ +jtan[pf-n®D n?[p? -q
Jo% —n?

From the results obtained above in Part A, an error less than
0.01 seems acceptable.

The integral in (156) was evaluated by means of Simpson's
rule. Several diffierent increment sizes were chosen throughout
the range 0 < n < ng. For some values of n, the integrand in (156)
fluctuates rapidly, while for other values of n it is slowly varying.
To reduce the computer running time, it was desirable to make
the increments large in the regions where the integrand is slowly

varying.
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The results of this calculation are shown in Fig. 6 through
Fig. 23. These figures show the normalized admittance A Y

o
in terms of normalized conductance and susceptance,

A .
157 B y- L2 Gg+i B
(157) Y, ) ¥

for nine combinations of A and D. Although there is perhaps no
need to include "A'" in the normalization of Y (since it has a given
value for each curve), it has been included so these curves may be
compared directly with Fig. 2, for the infinite lossy medium.

Figures 6 through 11 show the admittance for A = 1, Figures
6 and 7 andfor D =1, Figs. 8 and 9 for D = 0.5, and Figs. 10 and 11
for D = 0.25, Figures 12 throughl17 are for A =0.5with D=1, 0.5,
and 0,25. Figures 18 through 23 show the results for A = 0,25 and
again with D = 1, 0,5, and 0,25.

For the case where the slab has large loss (k has a large
imaginary part), the admittance is seen to be the same as in Part A
above. This result is expected, of course, because for large loss
the effect of reflections at z = d should be negligible at the aperture.
On the other hand, for a low loss medium, the admittance is found
to oscillate rapidly as a function of k; /ko. In fact, for ¢ = 0°, the
admittance cannot be shown meaningful on the same graph as for

¢ > 15°, because it oscillates too violently. For this reason for
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¢ = 0° the admittance has been plotted on a separate curve for each
combination of A and D.

It is interesting to note that the curves of admittance are in
some cases double-valued. That is, the same admittance can result
from two or more values of k., This is evidenced by the folding over

in some of the curves (for example, Fig. 8).
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CHAPTER 1V
THE RECTANGULAR APERTURE

In this section the admittance of a rectangular aperture
radiating into a lossy medium will be found. As in Chapter I,
Part A treats the case of an infinite lossy medium and Part B the

case of a lossy slab.

A. The Infinite Lossy Medium

Consider a rectangular waveguide which radiates through an
opening in an infinite ground screen, as shown in Fig. 20. The
half-space z > 0 is assumed to be homogeneous and isotropic, with
a complex propagation constant k; as given in Eq. (35).

The waveguide aperture has dimensions (a,b), as shown in
Fig. 24. The electric field in the aperture is assumed to have the
form of the TE,;o waveguide mode, with the electric field in the x-
direction

I_Z_ cos I¥ : (x,y) € Aperture
ab b

(158) Ex(x, y,0) = eglx,y) =
0 :(x,y) £ Aperture.
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- X

Fig. 24--Rectangular aperture in a ground plane

The normalizing constant l -—ZB- is included so that the nor-
a

malization relations

a/2 b/2 a/2 b/2
(159) leif2axdy = hi|%dxdy = 1
‘§x=-a/25y=-b/2 ' ¢ Sx=—a./25 y=-b/2’ t[ 4

are satisfied, as discussed in Chapter I.

With the aperture field as given in (158), the field is every-
where TE to the y-axis.‘z Hence the field may be represented by
an electric vector potential

(160) F=yu

“2For a proof of this, see Reference 37.




59

where | satisfies the wave equation
(161) Ytk g =0

with the appropriate boundary conditions. The electric and mag-

netic fields are given by

(162) E=-VXF
:161 :: 1 rv(vai‘\ J'_‘l.zf‘]
(10 ot L i 1 £ 5 .
In particular,
(164) E, = ¢
9y
1 %y 412
165 H = + k) QJJ .
(1e9) y jwuo[ayz
A solution for ¢ is given by:
1 7" jk ik ik
= . =JKzzZ  ~JRxX =) Yy
(166) " (2—17)75 S‘ (I, ky)e e ey dic dky
-0V ~00
with
J 2 2 2
(167) ky, =] ki - ky - ky

where the square root is chosen so that

LI
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(168) Re(k,) > 0

(169) Im(k,) < 0

corresponding to propagation in the +z-diredion. Then from (164),

o0 00
- 1 , ~jkgpz_-jkyx_-jkyy
(170) Ex(x, y,z) = (_2?)_5 S‘ J -szf(kx,ky)e Z%e VX e Y
- - 00 .
- dky dky .

The inverse transform, evaluated at z = 0, gives

® % +ik,x +k
. X
(171) -l iy, Ky g S E,(x, v, 0)e T e TNy gy gy
-00Y =00

Substituting for Ey(x, y, 0) from (158) results in

a/2 b/2 . .
(172) -ik f(ky, ky) =, i‘g‘ | Zg cos ~L e'+kaxe+Jkdede
ab x=-a/ y=-b/2 b

[’ b
2mb cos (EL)

ol

Yy
Hence,
sm(lfl{i) cos ki’)
4wj |2b 2 z
172 f y k) = _—
( ) (IS{ y) IS(kZ J a TTZ - kZ bZ
Yy
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and ¢ in (166) is then
sm(.kLa\) cos (_lf%tz)
4 2
174 le S j
(74 b= (Z'n')z v - kZb?
Yy
e Jkzz o ~ikxx e-jkyy dky dky .
Then from (164) and (165), E_ and Hy are found to be:
k. b
sin (kxa)cos (_g_)
_ 1 2b
(115 Byeym = L[ ( (7 am A Z S
{2m) JRY, _me m - ko b
o K22 -jkyx -k yydkxdky
. co41r (k; K ) sm.(k’z‘a) cos(lf%b_)
(176) Hyl(x,y,z2) = ——zl S
(2m) o ik, ? - kb
-ik s -ik
. e 2% kaxe ! yydkx dky .

The aperture admittance may now be calculated from Eq. (12),

which for this case is

a/2 b/2 _ A
S S‘ E(x,y,0) X I'(x,y,0) + zdx dy
x=-a/2 y=-b/2

a/2 _b/2  _ _ 2
S Zg E(x,y,0) *eyix,y)dx dy
x=-a/d y=-b/2
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As with the infinite slot, since go(x, y) is used for I_E(x, y, 0), it follows

from the orthogonality of the vector mode functions that

a/2 b/2

(178) g g E(x,y,0) X T(x,y,0) + 2 dx dy
x=-a/2dy=-b/2

a/2 b/2

=S § E(x,y,0) X H(x,y,0) - 2 dx dy .
x=-a/2v y=-b/2 ,

Also the integral in the denominator of (177) is unity. Hence, sub-

stituting (175) and (176) in (178) and making use of Parseval's theorem?*?

(the limits of integration may be extended to infinity because

43For the Fourier transform pair

1 (o] =] T _]k y

= —J X = y

g(x,y) (2—ﬂ)2§ S Glky, kyle " x"e diy dk,,
-00

- 00

tikyx +jk
Ik e5YY 4y ay

Glky, ky) = gw f glx, y)e

Parsevalls theorem is:

g-oo S-oo gl(x, Y) gz*(x, Y)dx dy i (_Z%,-)-Z -S\-mS-mGl(kx, ky) G;(kx’ ky)
+ dky dky

and one form of the convolution theorem is

§ g g1 (x, y)g, (-, -y)dx dy = (—Tg f Gllg )G (e )
~oo . dicy dicy
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E(x, y,0) is zero outside the aperture) yields for the admittance:

.2 kxa, kb
g S (am2 (k%) O (T)C“z (—Z—)

n? k2 b (v - Kk Db%)*

(179) Y = (——r——
Z

2m)fawp,

-dlg(dky-a

Next, the terms of the integrand may be recombined as follows. Let

k
8b kz 2 sin® _};a_._ cos? .k_XE
(180) F) (ky Key) = sl Tl) 2
2 aWwiu o IKX s 2 w2 v 242
Ho Ry (m® - k* b%)
y
472 _ 4n?

(181) F, (ky ky) = 2
z

—szl-kz-kz .
%% T Yy

Then using the form of the convolution theorem given in the foot-

note on p. 62,

1 o0 [> o]
(182) Y = )t S_m S‘-m Filky, ky)F, (ky, ky) dk, dky

- neong o yaxay

where {; (x,y), fz (x,y) are the transforms of F, (kx’ky)’ F, (ky, kY)’

and are found below.
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Consider {; (x, y) first:

[o<3 0 ’
_ 1 -jkyx -jkyy
(183)  fi(xy) = 5 S_m S_w F (ky, kyle e Y i, dky

sin? (E’.‘i) cosz(}_(.Y_E)
8b(k1 -kv) 2 2
(Zw)zg g awpok? (m? -k;bz)2

-1k -3
e JRxX e Jkyydkx dky

2b o sin® ( a) jkex 7 2 2 cos® ( ——ky )
2 B x 2

184 = —= S e § (ky -k_)

( ) aw T o kxz o Yy T o o

(w? -k;bz )2

~ik
e dek

v
These integrals are easily done, and the result is:

2b

(185) f;(x,y) = e 0“2 g(x)h(y)
where
rlzr.(a-’xl): [x[Sa
186 = 4 .
(186)  glx) 0 : |x]>a
\
. 1yl
Dl(b-ly[)coslf}unzsin“—b’i— clyl< b
(187) h(y) =] b
| 0 : lyl> b
and




(188) D,

1
U‘Nl,_.
——
ﬁl"‘wm
1
EJ:
—

2 b 2
1 bk 1 o1l K T
18 D = 1 4+ —f = . |+ — |-
(189) 2 b2 [4"2 4b] b [ 4T 4b

Next, for f,(x,y),

1 00 00 - =3
(190) £, (x,y) =—(?n—)25 g Fa (ky, ky)e ngxe IRyY ax,, diy

o JRxX -JkyY
(191) S' 5 dkx dky
-x v - Jkl - k '

Doing the integration on ky gives*?

o kaxdk (2) 2 >
(192) =£——F =+rH_ (|x|]k -k

) .
-oolkl' 4

The integration on ky then yields

S\jo [TI'H (’x[ l k; -k Jkyy Y

(194) _ e‘jkl |x ty

= 2mj

(193) £, (x,y)

}]

x“+y

*4 This integral is derived in Reference 37.
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The integral in (193) is known as Weyrich's integral."‘5 Thus,

(182) gives

(195) S S 2bi_ g(x)hiy) &

and since g(x) = g(-x) and h(y) = h(-y), Y may be written:

=

(196) Y =~6PJ S‘ g g(x)h(y) £ dx dy .
x=0

aw l,l_o1T

Finally, substituting for g(x), h(y),

(197) Y =

) b a .
8b) ‘Sj SI (I-x)[‘Dl(b-y) cos L + D, sin %]
aw |J'0 Y:O x=0 b

gk [ 4 y?

’ e d.XdY 3
x° +y

Before evaluating (197), it is convenient to normalize with respect
to the free-space constants. As before, let k, be the free-space

propagation constant,

(198) kg = w 'p.oéo = )\3"_
. (o]

45 W, Magnus and F. Oberhettinger, "Formulas and Theorems
for the Functions of Mathematical Physics,' Chelsea Publ. Co.,
New York, 195; p. 34.
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(Ao is the free-space wavelength), and let y, be the free-space

characteristic admittance,

€
(199) v, =| = .
o

Then (197) may be written

B
(200) Y = Y -8B SA ‘Sﬂ (A-1) [(:1(1:1.-5)(:051';—g sin %g_]
Yo A n:o g:o
(ke
. J\kou 1©+§
. dn dg
B
where
(201) A =koa
(202) B = kb
Dy 1 (kP _(w
(203 C1 =33 ° o2 (ko) (‘é)]
D, 1 K V2, (r \?
208 G m[(ir) “(2)

and Yp, is the normalized aperture admittance.*¢

46 Note that the normalization is not the same as for the
infinite slot.
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B. Numerical Results and
Interpretation

Equation (200) has 'been evaluated in the Univeréity's Nu-
merical Computation Laboratory with the IBM 1620 Digital Com-

puter for three sizes of apertures:

: A x
a) A=T B=qx(l0bylo
(a) > (4Y2>

_ 3w _ 3uf3\ 3o
b) A== B =370 , N0
(b) 2 2(—8 y4>

Ao
(c) A=, B:Z“""Z—by)‘o .

The computation was done by means of Simpson's rule, after making

the change of variables

(205) n =R cos 6

(206) £ =R sin 0,

With this substitution, (200) becomes

A
eo COS ¢]
(207) Y =8 _Bj g S (A-R cos 0) | C,(B-R sin 08)cos X (R sin 6)
| A" Jo=0 YR=0 B

..j-lf-LR
+C,sin T (R sin 9)} e "ko dRd6
B
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™ B
2 sin 6 .
(207) 48 %j 5 g‘ (A-R cos 9)[C1 (B-R sin 6) cos—B-(R sin 0)
cont. 8=65+- R=0 '
ky
=j R
+C,sin T (R sine)] e Ko dR d6
B
where

(208) tan 6, =

>t

This change of variables removes the singularity at n=£=0
in the integrand of (200), which is troublesome for computer evalua-
tion,

The double integral is evaluated as an iterated integral, the
integration of R being done first. S_limpson's Rule is used throughout,

First, with 0 held constant at each of the values 0, 0.1 (%) , 0, 2(%),

see, (%), the R-integral is computed by breaking the range of R
into ten subintervals, evaluating the integrand at the end~points of
the subintervals, and summing according to Simpson's Rule. These
values, which form the i‘,ntegrand for the O-integral, are then summed
again by Simpson's Rule to evaluate the O-integral.

The results of this calculation are shown in Figs. 25 through
29. The admittance Y, is plotted in terms of normalized conductance

G, and normalized susceptance Byp:

(209) Y =G, +jBp.



0.2

0.1

-0.2

Fig. 25--The normalized admittance _L_. for an infinite medium
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With C and ¢ defined by
(210) ki o_ged®
kO

the results are given for various values of C and ¢.

Figures 25 and 26 show Y, for the case A = %, B=mw.
Figure 25 gives the results for 0< C< 1 and 0 < ¢ < 90°, and
Fig. 26 for 0< C< 5and 0 < ¢$<90°. Figures 27 and 28 show Yy
for the case A =%', B = 121 In Fig. 27, the limits are 0 < C < 1
and 0 £ ¢ < 90° and in Fig., 28, 0 < C< 3. Figure 29 shows Y, for
A=wm,B=2rand 0<C<2, 0<¢$<90°.

Finally, as a check on the numerical results, the integral for

Y, may be evaluated approximatelly for the case where k; has a large

(complex) value. In (200),

A B
(211) Y, =§¥_ =8 %j S S (A-n) [c1 (B-£)cos ’_‘éé +C, sin E'E%]
o n=0v¢=0

. Kk 3
R +
. &g Inz g

- d‘r‘d&.
n“ +§£

The change of variables in Eqs. (205), (206) gives the substitution

S

RN et (k

[ te _J(_L\R
o ko

(212) £ dn df = e
n“+§£

dR d6 .
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If r_ has a large (negative) imaginary part, the only contribution to
o
the integral in (211) will occur in the vicinity of R = 0. In this region

the other terms in the integrand may be approximated by

(213) (A-n)=A
(214) C, (B-£) cos %Fl =CiB
(215) C, sin%—’&o .

Also the range of integration on R may be extended to infinity with
little change in the value of the integral. With these simplifications

(211) becomes

™
o) —2_ _J(EL)R
(216) X =8 _P_’j.g S AC,Be ‘fo’/ 4R d6
Yo A7 JrsoYe=0
217) =4nclBZ(1—‘-1->
ko >

k
From (203), for large _1_<_1_ , C, becomes
o

1 (kY
v 1 (I
(218) Gy = 41rB2(ko)

so (217) yields
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~

Y
(219) =
Y, o

Wl_zF‘

. 'k
a surprisingly simple result This behavior for large E‘l— is clearly
o

indicated in Figs. 25 through 29.

For small -::—1— it is difficult to find a simple approximation for
o

.Y, from Eq. (200). However, for the case where ks purely

o
imaginary, it is easy to see that Eq. (200) gives a purely imaginary

admittance, because C, and C, are real and the integrand has a
real value.
The reason for this can be appreciated by examining Eq. (176)

for the magnetic field. In the aperture, (176) gives:

I 2 .2 sin—i)cos(}(ﬁ)
21 1 |2b 4w (K, -ky) 2 2
(220) Hy(x,y,0) = —— — | =2 3
(2m)° wpoy 2 oo —oo kx kz wz-k;bz

oz o
o TIRxx _-ikyy

dic, ke,

This may be written

221 N Y e
(221) Hylx, y, o) (2")2WOJ:S_OOSWGI&X.ky)cz<kx,ky)

ik mik
o Ikxx =jkyy

dky dky

where
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1 1
(222) G(ky, ky) = X e ——
z J ky =k -k
4 (kz kz) sin(-——k;‘a)cos( kyb)
ks 1 - 2
223) Gylk,, k) = r
(223) 2 (ke Ky) ky e -k;bz .
Then by making use of the convolution theorem
oC (o0}
(224) S‘ ‘81 81(ﬂ,§)gz(x'n, Y'adﬂ dg
—-00 =00
00 (ee]
-1 ~jkyx —jkyy
(z_n) S_m S_m Gulley ky) G, (i, K de ™ X e ™YY diey dkey

where

[o 8} e o]
1 -jkyx -jk

(225 gxy) =5 S g Gilly, kyde T e ™YY dk, dky
=00 7 =00

1 0o 00 —ik -k
(226)  ga(x,y) = (‘é;j'zg g G, (ky, ky)e Pt =YY i, dky,

and the transform pairs given by Eq. (175) and Eq. (190) through

(194), H, may be written

Yy




1 J 2 2 az a/Z b/Z
(227) Hy(x,y,0) = — == ———(kl — S‘ .
y 2
wpo 2m¥ab ay n=-a/2"g=-b/2

-jky| nZ+E?
. cos %(y-g) < dn df .
Inz + g2

Now for the case where Re(k;) = 0, the integrand in (227) is
real, klz is real, and hence HY is purely imaginary. This means
that the electric and magnetic fields in the aperture are in time
quadrature. The integral in the numerator of Eq. (177) is there-
fore imaginary.

This situation is similar to the case of large waveguide

terminated by a small cutoff waveguide, as illustrated in Fig. 30.

Large Waveguide

Small Waveguide
Incident Below Cut-Off

TE,o Mode

Fig. 30--Waveguide analogy
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In the small waveguide the electric and magnetic fields are
in phase quadrature and the effective termination of the lar'ge guide
is a pure susceptance.

It is interesting to note that for k; = 0, the magnetic field is
quasi-static, For a fixed aperture size and fixed frequency, the
condition ki = 0 corresponds to ¢; = 0, o3 =0 in Eq. (35), which
leads to a Laplace's equation for the magnetic field. (The case
k; = 0 can also be interpreted as the zero-frequency limit; but
since the curves in Fig. 25 through Fig. 29 are plotted for con-
stant A = kga and B = k b, the physical aperture size must be

considered as varying inversely with frequency in this case.)

C. The Lossy Slab

Next the aperture will be assumed to radiate through a
lossy slab of thickness d into free-space. The field in the aper-
ture is the same as in Part A, as given in Eq. (158).

Unlike the previous cases treated, the electromagnetic
fields for this problem are not TE to the y-axis. An attempt to
construct a solution with F as defined in Eq. (125) will not work,
because the solution will not satisfy all boundary conditions. Hence
the vector potential must have two components. One possible

choice for F is
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—_ A A
(228) F = ¢x + 4y

where ¢ and § are both solutions to the wave eqﬁation '

(229)  (V + ki, o) :’ -0.

As in Part I-B above, the slab will be called Region 1 and
the free-space Region 0. In region 1, solution for ¢ and ¢ may

be constructed in the form
1 0% iky12 +ik
(230) Ya(x,y,z) = TZT)ZS S [Iq,e 3tz +'R¢e Jz1%
-00 -00

-jkyx -jkyy
- e y dkx de

(231)  &i(x,y, 2) :(_2}1;72 g_ S_ [1¢e-jkz1z+R¢e+jkz1z]
. e"jk'xx _Jkyydls( de

and in Region 0,

S T Gl o -ikgoz _-ikyx -jkyy
(232) ¢q(x,Yo Z)—(Z—TI')Z S-wS‘-w T¢e z0” ¢ kx e ¥ d.lg(dky



w w . . »
(233)  dolx,y,2) = ——y Tge I°z0% T “JKyY g ai
2m?)__J_. *

where the propagation constants

l 2 2 2
2 2 2
(235) ko = l ko-ky-ky

are chosen so that

(236) Re(kzi), Re(kzo) 20

(237) Im(kz)), Im(kzo) < 0.
The fields are found from the relations

(238) E=-vX F

-— l 2 — —
239 H = - k F+vV(VeF
(239) pro[l,o ( )]

which give in Region 1,

e} 00 . .
(240) Exi{x,vy,2z) = 1 [-jkgil e-sz1z +ikz 1R e+szlz]
(ZTr)2 b $
-00 Y =0

-jksx -jkyy
. e e dkx dkY

80
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4] [s ¢}

1 . -jk +jk,, 2

241) Epxy.n) = oo §§ intge % i rge T
-0V -0

-jkyx -jkyy
- e y dkx dky

Z 2
“kx -jk +jk
JKZz12Z JKz1
y S‘ Tom o [I¢e 21% +Rye ]

(242) Hxilx,y,2z) =
(ZTr)3

__X_L [1 e Jkle+RdJe+-jk21z ]1
Jmo '

. e-kax e-JkYY dky dky

00 o
1 kl -k -jk +jk
243 Hytey,n = o | Y Tong [y 7T 4Ry V]

k ky [Iq) -sz1z+R¢ +szlz]
Jwpo

-jkyx  =jk
. o Tkxx _-jkyy

dicy dky

and in region 0,

- -_]k z -jkyx -jkyy
(244)  Eyolx,y,2) = (ZH)ZS S kyo Tye P¥z0%e HorteHyYge aic,
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.(245) Eyo(x,y,z) (2 )z S S\ +ikzo T¢e -jkg oz -jkyx -JkyY
- dky dk
ko-k k, k
(246) Hyo(x,y,2)F (2“_)25 S‘ [—l‘]wpo Ty -ﬁg’ Ty,

e~JkzoZe-JkxX o JRyY gk dk,,

kyky
(247) yo(x y,2z) = (Zm )zS S pro Ty - Toug Tg

e-JkZOz -jkxx -Jkyy dkx dky.

Taking the inverse transform of (240) and (241) at z = 0 gives

k b
sin(—’@—)cos (EY_)
] = 4n le 2 2

% ky(n® - kD b?)

(248)  jkgy [-I v TRy

(249)  jkg, [I¢, - R¢] =0.
Applying boundary conditions at z = d leads to the four equations

. -jk,1d , . +ik,d -jk_.d
(250) ‘sz11¢e JRz1 +sz1R¢e JRz14 _ = -jk,q TLpe z0

~jkzd k,d -jk
(251) Jkzilge ez -jkziRgp e = tjkzo Tpe Wzo
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2 2 -1 5 _3 .
(252) (g -k [1ge 22104 Ry oz ) i (10719 4 g o tikard)

= (kg- ,2() Tq,e-jkzod - kyky Tq)e'szod

(253) (k] k) [1ge T MRy a1 e i [1geRz1d 4R o PR

—ikzod _

oz 2 -jkyod
—(ko-ky) Tye ° IS‘kYTq,e zo™ |

The solution of Eqs. (248) through (2

wn

3) is tedious but straight-

forward. In determinant form, Iq, and I¢ are found to be given by

Ay B,
A B
(254) Iy = 12 21
Apn Alz]
Aj, A,
B, Ap,
B A
(255) Iy = 222 22
\A5 Aj,
A, | Ay
where
' +
(256) B, = -kxkyeﬂkmd(kZl Xzo jf
2k, o
_ 1 +jkz1d 2 2 2 2 kzo .
(257) B, = —2— e (ko-ky) + (kl-ky) -1-(_; if
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(258) Ay = (ki -ko)kgo cos kpd + j(ko-ka)kz sinkgd

(259) Aj,

~kyky(kzo coskzid + jkz) sin kz,d)

2
(260) A, = (ko -ko)k, g cos kzid + j(ko-k )kz; sin kz;d
y zO (o] y

and where f is the quantity

Sin(liﬁ) cos (.liLb)
(261) £ =4m %‘?- 2 2

ky(n? - kj b?) .

Also from (248) and (249), Rq_, and R¢ are given by

262) Ry =_{
( ) § jkz1+14’

(263) R¢ =1g .

Equation (177) of part A will be used to find the admittance.
Using Parseval's theorem and Eqs. (240) and (243) for the fields

gives

_1 0 ) ) * ! 2 2
o9) Y- L g-m S‘j { ikl 1¢+R¢]} {j_w?fo s -k5) (I, R,y)

-kxky(1¢+R¢)]}dkx dky .

With (262) and (263) this may be written
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S U G G LU R |
(265) Y = FTIH S‘-oo g_w e [(k; ~ky) (214, o ) ~kyky ZI¢]dkxdky.

Again Y will be determined in terms of the normalized constants

K

(266) n=2X
ko

(267) &= ¥
kO

(268) p=ceit-L

(269) A =kga
(270) B = kb

(271) D =kqyd .

Define also

(272) R=[p?-nZ - €

(273) P =J1 -n? - ¢
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o[ 2)

n(nz - gZBZ) .

2B
274 F = -
g ) 411'J =

Then IqJ and I may be written

1 1
(275) IL'J Kzo- ILP

(276) 14 = 14
: )
N 1 ] .
with Iq; and I¢ given by
Cih D
. Ciz D,
(277) 1) =
Cii GCi,
Ciz Cp
D, Ciz
: D, Ca
(278) 14 =
Cun Cy,
Ciz Cp
where

(279) Dy = -ng e RD (R—;ﬁ)ﬁ
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(280) Dz:%e+‘jRD{(1'§Z)+(P2‘§Z)§ iF

(281) C;1 = (p?-n?) P cos RD + j(1-n2)R sin RD
(282) C;z; = -n&(P cos RD + jR sin RD)

2 i R2 .
(283) C;2 =(p?-£) P cos RD + j(1-£*)R sin RD .

The admittance Y, normalized to the free-space characteristic

admittance y, is then found to be

(284) Yp= ¥ - _; 2 F 2-2(21‘-'5)-2 1, fdn dt.
) Yn Y, J(z")zS_wS_w {(p 50\ &y~ J g )-2ntlpfdndé

Equation (284) has been evaluated on the OSU IBM 7094. The .

integration is actually done after a change of variables

(285) n =8 cosa

(286) £ =p sin a

so that
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1 C ® 2w [ ' F
287 Y., = - — F 2 _.a2gin2 21' i _)
( ) n J (211’)2 gg:oga:o (p?-B¢sin a)( yJ R

-2(3z sin a cos a Iq;} pdpda.

After this change, only one infinite integral must be evalu-
ated, instead of two. Simpson's rule is used. The integral is
done as an iterated integral, the integration on «a being done
first. The integration on g is done over a finite range, where
the upper limit is chosen so the range of integration includes all
values of B for which the integrand has a significant value. The
method of choosing the limit is to test the integrand at successive
increments of B, and if its value is small enough to contribute
less than 0.0001 times the value of the integral for five increments
in a row, the integration is terminated.

Numerical results were obtained for the case A = —12[, B =,
and D = 7 and are shown in Figs. 31, 32, and 33. As expected, for
k; with a large imaginary part, the admittance is the same as for
an infinite lossy medium. For k; a real number, corresponding
to a lossless dielectric, the admittance fluctuates rapidly as a
function of k; . Except near k; = 0, the admittance is seen to be
quite similar to the admittance per unit length of the infinite

slot.
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CHAPTER V
CONCLUSIONS

The admittance has been found for an infinite slot and a
rectangular aperture, as a function of the complex propagation
constant of the lossy medium,

The admittance of an infinite slot radiating into a lossy
half-space is shown in Fig. 3. Figure 3 is best interpreted as
showing the admittance as a function of €¢; and o,, for fixed aper-
ture size and fixed frequency. The dependence of Y on aperture
size or on frequency can be calculated from Fig. 3. It is noted
that the behavior of Y near w = 0 is markedly different for ¢; =0
than for o; # 0.

The admittance of an infinite slot radiating through a lossy
slab into free-space has been found and the results are given in
Figs., 6 through 23. As would be expected, when the slab becomes
sufficiently lossy, the admittance is identical with that for an in-
finite lossy medium. For a low-loss slab, the admittance
fluctuates rapidly as a function of the propagation constant k; .

For lossless k,, the admittance undergoes resonances which are

92
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more pronounced for the higher values of k; . This behavior is to
be expected because, vigwing the slab as a section of transmission
line between the aperture and the free-space region, it is seen
that the higher the value of k; the worse is the impedance mis-
match at the interface.

The édmittance of a rectangular aperture antenna has been
found in Chapter IV, The results for an infinite lossy medium are
shown in Figs. 25through 29, for three sizes of aperture. The
admittance for the rectangular aperture is seen to be similar to
that of the infinite slot. One difference, however, is seen near
C = 0, where the admittance of the infinite slot goes to zero but
that of the rectangular aperture has a finite negative susceptance.

The admittance of a rectangular aperture radiating through
a lossy slab has been found., Numerical results are plotted in
Figs. 31, 32, and 33 for the case A :12'-, B=m D=mn Again
the admittance is identical with that of an infinite lossy medium
when k; has a large complex value. As with the infinite slot
antenna, the admittance for real k; undergoes resonances which
grow in amplitude as k; becomes larger.

It is noted that in all cases the aperture admittance is in-
ductive when the medium is highly lossy. This is to be expected

since for a lossy medium the fields do not penetrate the medium
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to any apprecialbe depth. The aperture fields are then essentially
the same as they would be if the half-space were replgced With a
continuation of the waveguide, filled with the lossy medium. The
terminating admittance would then be simply the characteristic
admittance of the filled guide, which is inductive.

For values of k; corresponding to a medium with large

loss, the admittance of the infinite slot was found to be given by
A y-k o2
Y, k ™

and the admittance of the rectangular apertﬁre by

X
Y, kg &

The admittance of the slot or the rectangular aperture
radiating through a slab was found to be double-~valued, as a func-
tion of C, when the slab is lossless., This behavior is to be ex-
pected, since the slab acts as a transmission line joining the
aperture to the free-space region. As C changes, the electrical
length of the line changes, and the input admittance at the aperture
varies according. As would be true of an ordinary transmission

line, the admittance is double valued, (it loops on a Smith Chart).
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ERRATA FOR REPORT 1691-5, R. T. Compton, Jr., "The Admittance
of Aperture Antennas Radiating Into Lossy Media, " 15 March 1964,
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The numerical results as given in Report 1691-5 for the aperture
admittances of the infinite slot and the rectangular aperture are incorrect
for the cases of lossless or low loss slabs covering the apertures,.
Specific errors in Report 1691-5 include:

1) The results given in the following figures for the infinite
slot covered by a lossless slab (¢ = 0) are incorrect —
Figures 7,9, 11,13, 15,17, 19,21, 23.

2) The infinite slot results for the ¢ = 15° slab as plotted in
the following figures may be incorrect. Also the accuracy is
in doubt for some of the curves for ¢ = 30°, 45° in the following
figures. Figures &, 10, 12, 14, 16, 18, 20, 22,

3) The rectangular aperture results for the 15° slabs as plotted
in Fig. 31 may be inaccurate,

4) The results given in Figs, 32 and 33 for the rectangular
aperture covered by a lossless slab (b = 0) are incorrect,

5) The observations and conclusions by the author on pages 46,
47, 88, 92, 93 and 94 of Report 1691-5 regarding the oscillatory
and double valued behavior of the results for low loss slabs should
be disregarded.

The basic analysis for the infinite slot and the rectangular aperture
are correct as given in 1691-5. The details of the derivation for the
rectangular aperture have been checked and all equations including the
final equation (287) are correct. The source of error in obtaining
numerical results from the analyses is the neglect of surface wave
which occur in the integrand of the final equations.

Correct numerical results have been obtained for lossless slabs
by developing a computer program which locates the surface wave poles,
numerically integrates between the poles, and evaluates the contribution
of the surface wave pole residues to the aperture admittance. The
surface wave pole analysis, the highlights of the associated computer
program and the corrected theoretical results for the aperture
admittance of the rectangular waveguide are given in Report 1691-21.



